一种基于信誉的顾客信任评价模型研究

−B2B2C 申商模式下

山 邹 艳 王方杰 刘 念

(重庆师范大学经济与管理学院,重庆 400047)

摘 要:以电商企业的历史交易金额和信誉为基础,利用基于指数函数的金额类别影响因子来构建信任评价 模型,随后依次引入时间因素和交易成功率对该模型进行了扩展,以此来增加模型的适用性,最后算例分析验证 了该模型的有效性。结果表明:金额类别差值为正时的信任度比其为负时更小,差值绝对值越大信任度越小;历 史交易时间离现在越远对信任度的影响越小;其他影响因素相同时交易成功率越高信任度越大。

关键词:B2B2C 电商模式;交易金额;时间因素;交易成功率;顾客信任度

中图分类号:F49

文献标识码:A

文章编号:1672-3198(2015)05-0093-04

1 引言

B2B2C 是一种电子商务类型的网络购物商业模 式,第一个B指的是商品或服务的供应商;第二个B指 是的电子商务的企业,是广大供应商和消费者之间的 桥梁,为供应商和消费者提供优质的服务; C则是表示 消费者。B2B2C作为一种新型电子商务模式,其表现 出的优势是相当大的,根据国内知名电子商务研究机 构中国电子商务研究中心发布的数据显示 2012 年第 三方卖家在亚马逊上(B2B2C 电子商务模式)的商品销 售额大约为 205 亿美元,比亚马逊自营的销售额多 20 亿美元,第三方卖家销售额的年增长率超过了40%,高 干亚马逊整体的平均速度。由此可见这种新型的电子 商务模式的发展潜力是巨大的。作为一种基于信用的 网络消费方式,消费者对其信任的大小就成了 B2B2C 电子商务模式是否健康发展的重要因素。通过对交易 中顾客信任的评价,可以减少交易风险的发生,同时会 提高顾客对 B2B2C 电子商务模式的信任,有利干 B2B2C 的健康发展。

2 相关文献综述

2.1 B2B2C 电商理论综述

B2B2C作为一种新兴的电子和商务模式,其发展 才刚刚处于起步阶段。国内外对于 B2B2C 的研究还不 是很成熟,主要集中于模式的阐述和一些简单的实际 运用。Song bo, Zhang Haiwei 通过对现有电子商务模 式的研究,提出了了B2B2C这种新型电子商务模式,同 时通过一些典型案例对这种商业模式的应用进行了详 细阐述;Li Zhao,Li Xiaolong 从系统构建方面对 B2B2C 的架构进行了详细描述;周建良从 B2C 模式的不足出 发,引出了B2B2C模式,并进一步阐释了其优势和面临 的问题。

2.2 信任评价模型研究综述

Waszczyk M 在 2002 年指出交易信誉是影响网络 交易至关重要的因素。国外关于网络信任的研究很

多,同时也提出了许多基于信任的交易评估模型,这些 模型主要有 Beth 信任管理模型 Josang A 主观逻辑信 任模型、基于 PKI 的信任模型、EigenTrust 全局信任模 型等。在前人研究的基础上, Damiani E, Vimercati D C, Paraboschi S, et al 提出了一种信任评价系统,该系 统可以通过分布式轮询算法对顾客对每一个交易方的 信任进行评价。随后 Marti S, Garcia Molina H 提出了 一种运用于电子商务的信任表决系统,该系统收集顾 客对销售商的信任评价,从而对销售商的信任风险进 行评价。Wang Y, Varadharajan V 提出了在离散化环 境中信任度量的几种指标,并指出连续的好评交易会 得到高的信任评价,之后其又将时间因素考虑进了该 信任评价模型中,该模型指出新交易对信任评价的影 响要比历史交易大得多。

大部分国内外信任评价模型依赖于交易的历史信 任度及其相关因素,却没有将交易金额考虑进去,恶意 卖家可能利用这一点先发起小额交易获取到更高的信 任,然后在大额交易上欺骗消费者。针对这一问题,本 文将交易金额考虑到信任评价模型中,提出了一种 B2B2C 电商模式信任评价的普适模型。

3 信任评价模型的建立

本文所构建的信任评价模型是以电商企业的交易 历史为基础,这些交易历史包括信誉度,交易金额,交 易时间,交易成功率等,本文先以交易金额为基础构建 信任评价的基础模型。

3.1 基本假设

假设顾客与电商企业将要产生一笔新交易,如果 历史交易金额与新交易金额相同或相差不大,那么其 历史信誉可以直接作为本次交易顾客信任度量的参 考。如果两者相差很大,那么其历史信誉对此次交易 的参考价值不大,但信息仍然有用。现假设:

- (1)交易的金额越大,卖方所获得的利润越多。
- (2)交易的金额越大,相应的对买方的风险也就越

基金项目:国家自然科学基金项目(71301180);教育部人文社科青年基金项目(13YJC630252);重庆市教委科学技术研究项目

作者简介:李山(1990一),男,重庆人,重庆师范大学经济与管理学院,硕士,研究方向:预测与决策的理论与方法。

大。

因此,可得到如下结论:

结论 1: 若历史交易与新交易的金额相同,则所有 历史交易可以直接作为新交易的参考。

结论 2:任何交易金额较少的历史交易对新交易的 影响较小,交易金额差距越大,影响越小。

结论 3: 交易金额较大的历史交易不能直接作为新 交易的参考,但其参考价值要比交易金额较小的交易 大。

从以上假设和结论中可以看出,新交易的顾客信 任度由以下因素决定,新交易的金额、每一笔历史交易 的金额、每一笔历史交易的信誉度及由新旧交易金额 差值决定的影响因子。

3.2 信任评价模型的构建

由假设和结论可知新旧交易金额差值是影响信用 风险评价的重要因素,为了测度这种影响的大小,首先 定义新旧交易金额的差值为:

$$\Delta_a = \cosh_{new} - \cosh_{old}$$

其中 cash_{new}表示新交易金额,cash_{old}表示历史交易 金额。

此时令金额影响因子 θ 。为 Δ 。对新交易信任度的 影响因子。根据结论 1,当 Δ_a 为 0 时, θ_a 应为 1,当 Δ_a 大于 0 时 θ 应该小于 1 并随着 Δ 的增大 θ 逐渐趋 近于 0(结论 2)。考虑到指数函数的性质可以较好地 反映出 θ。的特性,因此运用指数函数设计一个金额影 响因子 舟。令 舟。为

$$\theta_{a} = \frac{1}{\rho e^{\Delta_{a} * \alpha} + (1 - \rho) e^{-\Delta_{a} * \alpha}} \quad \Delta_{a} \geqslant 0$$
 (1)

其中 $\alpha \in (0,1]$ 表示衰减因子, $\rho \in [0.5,1)$ 表示控 制因子,主要控制大的交易金额差值对金额影响因子 的影响, 应越大表示大额交易对金额影响因子的影响越 小。

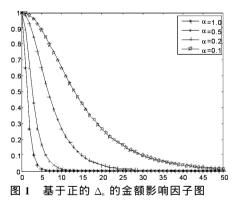


图 1 表示当 ρ =0.5 时正的 Δ 和金额影响因子 θ 的函数关系图。由图 1 可知 α 是用来控制衰减速度 的 $,\alpha$ 越大,函数曲线下降越快。一般情况下,一个小的 α (比如: α =0.1)可能更适用于一个大额的交易。

相应的,根据结论 3,当 Δ_a 小于 0 时, θ_a 应该小于 1。与此同时,不同于结论 2,随着 Δ 。的逐渐增大, θ 。应 该趋近于(0,1)之间的一个阈值β。因此,此时的金额 影响因子 θ_a 为:

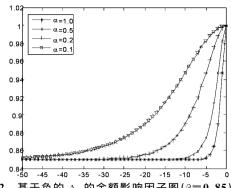


图 2 基于负的 Δ 。的金额影响因子图(β =0.85)

$$\theta_{a} = \frac{1}{\rho e^{\Delta_{a} * a} + (1 - \rho) e^{-\Delta_{a} * a}} \cdot (1 - \beta) + \beta \quad \Delta_{a} < 0$$
 (2)

其中 $\alpha \in (0,1], \rho \in [0.5,1), \beta \in (0,1)$ 。

图 2 表示阈值 β = 0.85 下负的 Δ _s 和金额影响因子 θ_a 的函数关系图。由图 2 中可知随着 $|\Delta_a|$ 的增加, θ_a 从 1 逐渐减少至 β。公式(2) 中,α、ρ 的含义与公式(1)相同。

由此可知,金额影响因子 θ。由新旧交易金额的 差值 Δ_a 决定。由于 $\Delta_a = \cosh_{new} - \cosh_{old}$,这意味着 10 元的与 11 元的交易是截然不同的。但就交易 的金额属性而言,他们可能是相同的,均属于小额 交易。

一种更可行的方法是将交易金额进行分类,所属 同一类别的交易金额认为是等同的。首先定义一个典 型的分类函数:

$$Ca(cash) = rpimd(log_{m}(cash))$$
 (3

其中 round 是四舍五入取整函数,m 取决于交易 商品的属性,比如交易为汽车之类的高端产品,则 m 的 取值相对较大,反之则较小。若假设 m 取 10,则此时 给定一个交易金额 cash,就可以求出其所属类别。比 如, cash = 1000,则它隶属于类别 3(即 Ca(1000) = $round(log_{10} 1000) = 3)$

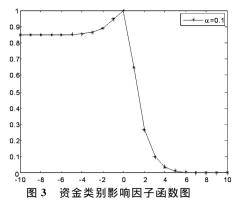
由此计算影响因子时,交易金额的差值应由交易 金额类别差值所替代。

定义1:若 cash_{new}表示新交易的交易金额,cash_{old}表 示历史交易金额,则定义交易金额类别差值为:

$$\Delta_{\rm C} = \text{Ca}(\cosh_{\text{new}}) - \text{Ca}(\cosh_{\text{old}}) \tag{4}$$

确定 Δ 。之后,相应的金额类别影响因子函数可表 示为:

$$\theta_{c} = \begin{cases} \frac{1}{\rho e^{\Delta_{c} * \alpha} + (1 - \rho) e^{-\Delta_{c} * \alpha}} & \Delta_{c} \geqslant 0\\ \frac{1}{\rho e^{\Delta_{c} * \alpha} + (1 - \rho) e^{-\Delta_{c} * \alpha}} \cdot (1 - \beta) + \beta & \Delta_{c} < 0 \end{cases}$$
(5)


其中 $\alpha \in (0,1], \rho \in [0.5,1), \beta \in (0,1)$ 。

由交易金额类别差值决定的金额类别影响因子函 数图如图 4 所示,其中 $\alpha = 0.1, \beta = 0.85, \rho = 0.5,$ $|\Delta_c| \in [0,10]$.

在 B2B2C 电商模式中,由于没有集中的信用管理 机制,为了获得新交易的交易信任度,那么顾客就必须 了解该电商企业的交易历史。

定义2:假设顾客已经从历史交易集 Purchase=

■ 94 ■ 现代商贸工业 | 2015年第3期(上)

 $\{P_1,P_2,\cdots,P_n\}$ 中收集到了一个信誉度集合 $R=\{R_1,R_2,\cdots,R_n\}$,其中 P_i 表示电商企业发生的第 i 次历史交易,则新交易的顾客信任度可定义为:

$$T_{\text{new}} = \frac{1}{n} \sum_{i=1}^{n} (\theta_{c}(i) \cdot R_{i})$$
 (6)

其中 $R_i \in [0,1]$ 表示历史交易 P_i 的信誉大小, R_i = 0 表示此次交易信誉极差, R_i = 1 表示此次交易信誉极好。 $\theta_c(i)$ 表示由 $\Delta_c(i)$ = $Ca(cash_{new})$ - $Ca(cash_{old}(i))$ 产生的金额类别影响因子, $cash_{old}(i)$ 表示交易 P_i 的交易金额, $cash_{new}$ 表示新交易的交易金额。

根据定义 2,新交易的顾客信任度 T_{new} 具有以下特点:

- (1)新交易的顾客信任度 T_{new} 由电商企业历史交易金额 $cash_{new}$ 共同决定。
- (2)如果每一个 cash_{old} (i) 和 cash_{new}隶属同一类别, 且 R_i 很大,则 T_{new}的值也会很大。
- (3)如果大部分 $cash_{old}(i)$ 和 $cash_{new}$ 隶属不同类别,那么可能导致 $\theta_e(i)$ 值很低,尽管 R_i 可能很大,新交易的 T_{new} 也会很小。

3.3 引入时间因素的信任评价模型

上节提出的信任评价模型中,未考虑到交易的时间因素,这就意味着不同时间的所有交易是平等对待的,这就可能导致信任评价的偏差。为了更加准确的度量新交易的顾客信任度,对发生在不同时间的交易应确定不同的权重。由于顾客的精力是有限的,其信息分析能力也就有限,所以其往往更关注时间最近的交易,因此离现在越近的交易权重应该赋得越大。

于是在收集历史交易的信誉度时,应当指明交易发生的时间段 $[t_{start},t_{end}]=\{t_1,t_2,\cdots,t_l\}$,其中 $t_k < t_{k+1}$ $(1 \le k \le l-1)$, t_l 表示最近的时间段。然后对每一个时间段的交易赋予一个时间权重,令交易的时间权重集为:

$$\mathbf{W} = \{\mathbf{w}^{(k)} : \mathbf{k} = 1, \dots, 1\} \tag{7}$$

其中 l 表示 n 次历史交易发生在 l 个时间段中, $\mathbf{w}^{(k)}$ 表示离现在 $\mathbf{l}-\mathbf{k}$ 个时间段的交易的时间权重, $\mathbf{w}^{(k)}$ $\leq \mathbf{w}^{(k+1)}$ 且 $\sum \mathbf{w}^{(k)}=1$ 。

因此,将考虑到时间因素的新交易的顾客信任度 定义如下。

定义 3: 令 $R_j^{(k)}$ 表示发生在时间段 t_k 内交易金额为 $cash_{old}^{(k)}(j)$ 下的历史交易信誉度,则电商企业发起的

新交易的顾客信任度可定义为:

$$T_{\text{new}} = \sum_{k=1}^{l} (\mathbf{w}^{(k)} \cdot T_{p}^{(k)})$$
 (8)

其中

- $(1) \mathbf{w}^{(k)} \le \mathbf{w}^{(k+1)} \mathbf{H} \sum \mathbf{w}^{(k)} = 1$

电商企业的顾客信任度, $m^{(k)}$ 表示在时间段 t_k 内发生的交易笔数。

(3) $\theta_{old}^{(k)}$ (j) 表示由 $\Delta_{c}^{(k)}$ $(j) = Ca(cash_{new}) - Ca(cash_{old}^{(k)}(j))$ 产生的金额类别影响因子,其中 $cash_{old}^{(k)}$ (j)表示在时间段 t_k 内发生的第 j 笔交易的交易金额。

此外,为了计算时间权重,本文构建了一个简单的权重分配函数。若给定参数 $\lambda(0.5 < \lambda < 1)$ 和 $\mu(\mu \in \{1,2,3,\cdots\})$,则时间段 t_k 的权重可表示为:

$$\mathbf{w}^{(k)} = \frac{\mathbf{v}^{(k)}}{\sum_{i=1}^{l} \mathbf{v}^{(i)}} \tag{9}$$

其中 $v^{(k)} = 1 - e^{-\lambda^k k^-}$, $0.5 < \lambda < 1$, $\mu \in \{1,2,3,\cdots\}$ 。根据公式(9), 若给定交易时间段数 1, 参数 λ 和 μ ,则每一个权重因素 $v^{(k)}$ 均可被产生,之后每一个权重 $w^{(k)}$ 就可以计算出来。此外, μ 的取值依实际情况而定。针对具体的时间段数,如 1 = 10 或者 20,意味着时间权重间的相关系数较大,在这种情况下, μ 可取 2。在另外一种情形下,1 取 100 意味着更大的相关系数,这时 μ 取 3 或者 5 则更加合理。

3.4 引入交易成功率的信任评价模型

在前两节中,默认每一次交易的企业信誉度均得到了顾客的认可。但在实际中,顾客对企业的信誉度不一定认可,这种认可度就体现在交易成功率上,交易成功率高则表示顾客对企业信誉度认可度高,反之则认可度低。一个信誉度极高的企业的交易成功率可能很低,这说明顾客对其高信誉度表示怀疑,其最终信任度也会大打折扣,所以信任评价模型应该将交易成功率考虑在内。

令交易成功率表示实际完成交易数占总发生交易数的比例,则可定义综合交易成功率。

定义 4: 假设在时间段 t_k 内回头客的交易成功率为 $DS^{(k)}$,只进行过一次交易的顾客的交易成功率为 $RS^{(k)}$,则时间段 t_k 内综合交易成功率可定义为:

$$S^{(k)} = \eta DS^{(k)} + (1 - \eta) RS^{(k)}$$
(10)

其中 $\eta \in [0,1]$ 表示权重因子,起反应的是回头客认可度对企业可信度的影响。一般地, η 的计算见公式 (11):

$$\eta = 1 - \frac{1}{\sqrt{Q}} \tag{11}$$

其中,Q表示回头客实际交易成功的次数,若Q= $0, y_0, y_1=0$ 。

定义 6:假设发生在时间段 t_k 内综合交易成功率为 $S^{(k)}$,则电商企业发起的新交易的顾客信任度可定义为.

$$T_{\text{new}} = \sum_{k=1}^{l} (\mathbf{w}^{(k)} \cdot T_{p}^{(k)} \cdot S^{(k)})$$
 (12)

现代商贸工业 | 2015年第3期(上) | 95 |

4 算例分析

下面通过算例说明本文构建的信用风险评价模型 的有效性。

算例 1:根据模拟某团购网站的交易历史,得到其历史交易的统计数据(见表 1)。

表 1 历史交易的基本统计数据

k	1	1	2	3	4	4	4	5	6	7	8	9	10
$cash_{old}^{(k)}\left(j\right)$	1	22	0.5	8	3.4	6	16	11	15	1.7	29	0.8	43
R{k)	0.85	0.83	0.74	0.80	0.69	0.77	0.90	0.81	0.78	0.77	0.63	0.50	0.91
DS(k)	0.81	0.81	0.84	0.75	0.78	0.78	0.78	0.88	0.94	0.92	0.83	0.85	0.76
RS(k)	0.72	0.72	0.68	0.74	0.75	0.75	0.75	0.84	0.90	0.89	0.80	0.83	0.71

注:表中交易时间段 k 越大,表示离现在越近,交易金额 cash()) 的单位为万元。

由表 1 可知,该团购网站共发生了 13 笔历史交易,其中时间段 1 发生了两笔交易,时间段 4 发生了三笔交易,因此 k=10, $m^{(1)}=2$, $m^{(4)}=3$,其余 $m^{(k)}=1$,假设新交易的交易金额为 3 万元,同时取 $\alpha=0.5$, $\rho=0.5$, $\beta=0.85$,m=4, $\lambda=0.7$, $\mu=2$,Q=8 对表 1 的数据通过公式(9)、(10)和(11)进行计算,计算后的结果见表 2。

表 2 计算后的历史统计数据

k	1	2	3	4	5	6	7	8	9	10
w(k)	0.0598	0.0771	0.0882	0.0964	0.1027	0.1078	0.1121	0.1157	0.1188	0.1215
Tpk)	0.8181	0.6562	0.7864	0.7626	0.7962	0.7388	0.7700	0.5967	0.4434	0.8620
S(k)	0.7782	0.7834	0.7465	0.7694	0.8659	0.9259	0.9094	0.8194	0.8429	0.7423

将表 2 的数据带入公式(12),可以得出电商网站信任度 $T_{new} = 0.5878$ 。

算例 2:现假设交易只进行两段,只考虑最近一次交易对新交易的影响,则 $k=1,m^{(1)}=1$,取新交易的交易金额为 1 万元,模拟中参数 $\alpha,\rho,\beta,m,\lambda,\mu$ 的取值同算例 1,相关统计数据如表 3 所示。

表 3 信用评价统计数据

类型	$\cosh_{old}^{(k)}(j)$	$R_{j}^{(k)}$	w ^(k)	$\theta_{c}^{(k)}(j)$	$T_P^{(k)}$	$\mathrm{DS}^{(k)}$	RS ^(k)	S ^(k)
1	0.1	0.88	1	0.6481	0.5703	0.79	0.75	0.7759
2	2	0.88	1	1	0.8800	0.79	0.75	0.7759
3	30	0.88	1	0.9472	0.8335	0.79	0.75	0.7759

注:表中类型 1,2,3 分别表示历史交易金额极小于、约等于、极大于新交易金额,其中交易金额的单位为(万元)。

因此,可以计算出不同类型下的信任评价值(见表4)。

表 4 不同类型下的信用评价值及信用风险值

类型	T_{new}
1	0.4425
2	0.6828
3	0.6467

由表 4 可知,历史交易金额较小的电商发起的大额交易是存在巨大信任风险的,其信任度要比历史交易金额较大的电商发起的较小交易额小。如果某电商的历史交易金额与新交易金额相差不大,则其信任度较高。因此,电商企业在发起新的交易时不应贸然改变交易金额。

算例 3:由于突然增加交易金额会产生巨大的风

险,因此接下来讨论正的交易金额类别差值对交易信任度的影响,参数 α , ρ , β , λ , μ 的取值同算例 1,另外对每笔交易取 k=1,R=0. 88, $S^{(k)}=0$. 92,最终得出的信任度值如表 5 所示。

表 5 正的交易金额差值对信用风险的影响

$\Delta_c^{(k)}(j)$	0	1	3	5	7	9
$T_{\rm new}$	0.8096	0.7180	0.3442	0.1320	0.0488	0.0180

由表 5 可知,如果电商企业增加交易金额,则其增加的幅度越大,其信任度越低,则顾客购买的可能性也就越小。所以若电商企业想增加新交易的金额,一种可行的方式就是逐次增加交易金额,每次交易均增加较小幅度,则其相应的信任度会很大,顾客购买的可能性也就越大。

5 结论

从本文的模型及算例分析可以看出,一个 B2B2C 电商企业的信任度的大小与历史信誉、新旧交易金额的类别差值、交易时间、交易成功率等因素有关。电商企业想提高信任度,给顾客呈现一个良好的信誉就要采取一定的措施,如尽量不要突然改变交易规模,如必须改变,应逐步改变;务必诚信交易,以获得良好的信誉;尽量给顾客提供优质的产品和服务,以得到高的交易成功率;尽量给顾客提供完整的交易历史记录,以方便顾客做出购买决策。

参考文献

- [1] Song B, Zhang H. A new operation model of e-business[C]. IEEE, 2010.
- [2] Li Z, Xiaolong L. The B2B2C Integrated E-Commerce Model Design Based on SaaS[J]. 2013;1123-1127.
- [3] 周建良. B2B2C——电子商务企业的赢利模式[J]. 太原城市职业技术学院学报,2006,(1):87.
- [4] Waszczyk M. Trust and on-line retailing[J]. Economics and values, 2002;131-138.
- [5] Beth T, Borcherding M, Klein B. Valuation of trust in open networks M. Springer, 1994.
- [6] Josang A. Trust-based decision making for electronic transac-
- [7] Blaze M, Feigenbaum J, Lacy J. Decentralized trust management [C]. IEEE, 1996.
- [8] Kamvar S D, Schlosser M T, Garcia-Molina H. The eigentrust algorithm for reputation management in p2p networks[C]. ACM, 2003
- [9] Damiani E, di Vimercati D C, Paraboschi S, et al. A reputation-based approach for choosing reliable resources in peer-to-peer networks[C]. ACM, 2002.
- [10] Marti S, Garcia-Molina H. Limited reputation sharing in P2P systems [C]. ACM, 2004.
- [11] Wang Y, Varadharajan V. Interaction trust evaluation in decentralized environments [M]. Springer, 2004;144-153.
- [12] Wang Y, Varadharajan V. A time-based peer trust evaluation in p2p e-commerce environments[M]. Springer, 2004;730-735.
- [13] 汪克文,谢福鼎,张永. 基于惩罚机制的 P2P 电子商务模型[J]. 计算机工程,2010,36(12);265-268.